Day 17 Analyzing data from a split-plot design

July 3rd, 2025

17.1 Announcements

  • Planning to miss >2 classes in July? survey
  • Watch last week’s classes (especially days 3+4)
  • Homework 3 is posted and due next Friday (July 11).

17.2 Background

We designed an experiment a split-plot design to figure out the best temperature and recipe to bake the muffins. Check out the original recipe here.

An appropriate model to describe the data is:

\[y_{ijk} = \mu + T_i + R_j + (TR)_{ij} + b_k + w_{i(k)} + \varepsilon_{ijk},\]

\[b_k \sim N(0, \sigma_b^2), \\w_{i(k)} \sim N(0, \sigma^2_w), \\ \varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^2).\]

17.2.1 Research question

What is the best temperature to bake the muffins?

  • 250 °F
  • 400 °F
  • 500 °F

How much banana?

  • 1 1/2 cups (12.75 oz, or 361 gr.)
  • 2 cups (17 oz, or 482 gr.)
Table 17.1: ANOVA without subsampling
Table 17.1: Design or Topographical Sources of Variability
Source df
Day (block) r-1 = 3-1 = 2
-
Error(oven) (t-1)r = (3-1)3 = 6
-
-
Error(oven x day) (b-1)* t * r = (2-1) * 3 * 3 = 9
Total N-1 = 17
Table 17.1: Treatment Sources of Variability
Source df
-
Temperature t-1 = 3-1 = 2
-
Banana b-1 = 2-1 = 1
TxB (t-1)*(b-1) = 2
Parallels N-tb = 18 - (3*2) = 12
Total N-1 = 17
Table 17.1: Combined Table of the Sources of Variability
Source df
Day r-1 = 3-1 = 2
Temperature t-1 = 3-1 = 2
Error(oven) (t-1)*r - (t-1)= 6 -2 = 4
Banana b-1 = 2-1 = 1
TxB (t-1)*(b-1) = 2
Error(oven x day) (b-1)* t * r - (b-1) - (t-1)*(b-1) = 9 - 1 -2 = 6
Total N-1 = 17
Table 17.2: ANOVA with subsampling
Table 17.2: Design or Topographical Sources of Variability
Source df
Day (block) r-1 = 3-1 = 2
-
Error(oven) (t-1)r = (3-1)3 = 6
-
-
Error(oven x day) (b-1)* t * r = (2-1) * 3 * 3 = 9
Error(recipe x oven x day) (m-1) * b * t * r = (3-1) * 2 * 3 * 3 = 36
Total N-1 = 53
Table 17.2: Treatment Sources of Variability
Source df
-
Temperature t-1 = 3-1 = 2
-
Banana b-1 = 2-1 = 1
TxB (t-1)*(b-1) = 2
-
Parallels N-tb = 54 - (3*2) = 48
Total N-1 = 17
Table 17.2: Combined Table of the Sources of Variability
Source df
Day r-1 = 3-1 = 2
Temperature t-1 = 3-1 = 2
Error(oven) (t-1)*r - (t-1)= 6 -2 = 4
Banana b-1 = 2-1 = 1
TxB (t-1)*(b-1) = 2
Error(oven x day) (b-1)* t * r - (b-1) - (t-1)*(b-1) = 9 - 1 -2 = 6
Error(recipe x oven x day) (m-1) * b * t * r - 0 = 36
Total N-1 = 53
Muffin experiment

Figure 17.1: Muffin experiment

17.3 Analyzing the data

Get code here.

17.4 Treatment means and confidence intervals for the split-plot design

The treatment mean for the \(i\)th temperature and \(j\)th banana level is \(\mu_{ij} = \mu + T_i + B_j +(TB)_{ij}\). That mean won’t change under different design structures. What may change is the confidence interval around the mean difference.

  • First, recall the formula for a CI: \(\theta \pm t_{df, \frac{\alpha}{2}} \cdot se(\hat{\theta})\)
#get test t
qt(p = .975, df = 4) # df are df error(oven)
## [1] 2.776445
  • For example, the CI for the differences between means for 300F and 400F \(\mu_{1 \cdot} - \mu_{2 \cdot}\) is \((\mu_{1 \cdot} - \mu_{2 \cdot}) \pm 2.78 \cdot se(\widehat{\mu_{1 \cdot} - \mu_{2 \cdot}})\)
  • \(se(\widehat{\mu_{1 \cdot} - \mu_{2 \cdot}}) = \sqrt{\frac{2 (\sigma^2_{\varepsilon} + b \cdot \sigma^2_w)}{b \cdot r}}\)

\[\mu_i \pm 2.78 \cdot \sqrt{\frac{2 (\sigma^2_{\varepsilon} + b \cdot \sigma^2_w)}{b \cdot r}}\]

#get test t
qt(p = .975, df = 6) # df are df error(oven)
## [1] 2.446912
  • The CI for the differences between means for normal and high banana \(\mu_{\cdot 1} - \mu_{\cdot 2}\) is \((\mu_{\cdot 1} - \mu_{\cdot 2}) \pm 2.44 \cdot se(\widehat{\mu_{\cdot 1} - \mu_{\cdot 2}})\)
  • \(se(\widehat{\mu_{\cdot 1} - \mu_{\cdot 2}}) = \sqrt{\frac{2 \sigma^2_{\varepsilon}}{t \cdot r}}\)

\[\mu_i \pm 2.44 \cdot \sqrt{\frac{2 \sigma^2_{\varepsilon}}{r}}\]

17.5 Tomorrow:

  • Measure heights of the muffins and analyze the data!